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LETTER TO THE EDITOR 

Computer-intractability of the frustration model of a spin 
glass 

Constantin P Bachas 
Laboratoire de Physique ThCorique de I’Ecole Normale Superieure,? 24 rue Lhomond, 
7523 1, Paris CEDEX 05, France 

Received 2 July 1984 

Abstract. We prove that finding a ground state of the three-dimensional frustration model 
of a spin glass is an NP-complete optimisation problem, and hence probably intractable 
in the sense that no algorithm requiring a time bounded by a polynomial of the volume 
can exactly solve it. 

Some time ago Kirkpatrick et al (1983) pointed out an interesting similarity between 
spin glass models, and a class of combinatorial optimisation problems known as 
NP-complete: both are characterised by a large number of nearly degenerate locally 
optimal configurations, fluctuating with disorder and separated by large energy barriers. 
This feature presumably accounts for the failure of local-search algorithms to find the 
true ground state in a reasonable amount of time, as well as for the experimentally 
observed long (infinite?) relaxation times of real spin glasses (dilute magnetic alloys) 
at low temperatures $. 

Even though necessary, the existence of a large number of metastable fluctuating 
states does not, however, suffice by itself to render an optimisation problem NP- 

complete, nor does it guarantee the existence of a distinct spin glass phase at 
thermodynamic equilibrium. This is clearly illustrated by the two-dimensional Ising 
model with competing interactions whose ground state can always be found by a 
non-local algorithm in time bounded by a polynomial of the volume (Bieche et al 
1980, Barahona et a1 1982), and which, furthermore, does not-according to current 
wisdom-exhibit a spin glass phase, despite the presence of both disorder and frustra- 
tion. A much subtler feature should therefore be responsible both for rendering 
optimisation problems intractable, and for the appearance of a spin glass phase, and 
the question naturally arises whether the analogy between spin glasses and NP-complete 
problems is deeper than it was originally meant to be§. 

A natural first step towards answering this question would be a classification of 
proposed spin glass models according to their algorithmic complexity. Barahona ( 1982) 
has already shown that finding the ground state of an Ising model with random 

+ Laboratoire Propre du Centre National de la Recherche Scientifique, associe a I’Ecole Normale SupCrieure 
et B 1’UniversitC de Paris Sud. 

§This is further supported by the observed ultrametricity of locally optimal paths in the Travelling Salesman 
Problem (Kirkpatrick and Toulouse 1984), a property also characterising Parisi’s solution of the Sherrington- 
Kirkpatrick model (MCzard er a/ 1984a, b). 

For a brief review of spin glasses see for instance Binder (1980), and references therein. 
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nearest-neighbour couplings in three or more dimensions at zero magnetic field, as 
well as in two or more dimensions in the presence of a magnetic field, is an NP-complete 
optimisation problem. In this letter we will extend his results to the three- (or higher-) 
dimensional frustration model, defined by the Hamiltonian: 

where the ai are again Ising spins, the summation runs over a nearest neighbours (NN) 
on a hypercubic lattice, but the couplings Ju can now only take the values * 1. Except 
for its finite residual entropy, this model is believed to share most properties of realistic 
spin glassest, and by virtue of its simplicity is most widely used for numerical 
simulations. Proving its NP-completeness might therefore also save the time of physicists 
trying to devise exact algorithms to generate its ground statesS. 

We begin by stating, in a slightly modified language, a known NP-complete optimisa- 
tion problem, Restricted Maximum Cut (RMC) (Yannakakis 1978)O: Given a graph 
G = ( V ,  E)  where V is the set of vertices and E the set of undirected edges (unordered 
pairs of vertices), such that no vertex has a degree higher than three (i.e. no more than 
three lines emanate from each vertex), minimise the cost function: 

where the a, are Ising spins. We will now assign to every instance (i.e. graph G) of 
RMC, an instance (i.e. configuration of coupling J u )  of the three-dimensional frustration 
model, so that minimising the cost function of the former is equivalent to minimising 
the energy function of the latter. This will prove that finding the ground state of the 
frustration model is at least as hard as solving RMC, and hence belongs to the class of 
NP-complete problem. 

Indeed, given an instance G of.RMc, we first construct a new graph d by doubling 
each edge of G and then adding loops (i.e. edges starting and finishing at the same 
point) until each vertex has degree six, as shown in figure 1 (for the field-theorist d 
is thus a vacuum diagram for a cp6 interaction). Next we embed d into a three- 
dimensional lattice, so that to each vertex v’ corresponds a lattice site (node) I ( ; ) ,  to 
each edge d = (3,, C2) a path on the lattice (‘wire’) I( d ) ,  going from I( Cl)  to I( C2), and 
such that the distance of any two distinct wires is always larger than a lattice spacing, 
except possibly in the vicinity of a node. In particular the wire network never overlaps, 
and can only intersect at the nodes; this is always possible in three or more dimensions. 
Finally we set Ju = +1 for all but the following special links for which Ju = -1: 

(a) one link in the middle of each wire which is not a loop (we shall call these 
links ‘valves’), and 

(b) two links for each lattice site on the network which is not a node, chosen so 
that all four transverse plaquettes at this site (i.e. plaquettes touching but not containing 
any link of the network) are frustrated. This is easier to explain with a picture (see 
figure 2). 

t See for instance Toulouse (1979) and references therein. 
$ It is currently believed that no algorithm with polynomially bounded time-requirement can solve an 
NP-complete problem. Proving (or disproving) this statement remains one of the main challenges for 
computer scientists and mathematicians. 
P For a detailed discussion and listing of NP-complete problems see Carey and Johnson (1979). 
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Fjgure 1. ( a )  a graph G and ( b )  the corresponding 
G obtained by doubling each edge, and then adding 
three loops. 

Figure 2. The distribution of coupling constants in 
the vicinity of a wire: links for which J,,, = - 1  are 
drawn in thick ink. They are chosen so as to make 
all four transverse plaquettes, at each site on the wire 
other than the two nodes, frustrated (transverse 
plaquettes are drawn with broken lines at two typical 
points on the wire). The valve-the single negative 
link along the wire-is absent if the wire is a loop. 

The virtue of this construction is that, as we will now argue, in order to minimise 
the energy ( l ) ,  one needs only to choose an optimal configuration of spins on the 
nodes. Indeed, let be a given, fixed configuration of spins on the nodes. Extend 
this to a complete spin configuration by setting all spins outside the network equal to 
+1, and letting spins propagate from the nodes along the network without changing 
sign except possibly at a valve (see figure 3) .  The energy of this configuration is 

E = -3 V +  N +2n(C?I(B,) (3)  
where V is the total number of lattice sites, N the number of plaquettes transverse to 
the network, and n(C?,(;)) the number of wires: I ( ; )  = (Z(C,), Z(C2)) other than loops, 
for which: 

e/(Iq@I(o,) = +I.  

Now since the N transverse plaquettes and the n(C?l(B)) wires must each have at least 
one violated link (a link is violated if JVaiaj = - l ) ,  and since no link can be shared by 
more than two transverse plaquettes, or a single wire at a time, we conclude that the 
energy of any configuration with is larger than or equal to (3). Thus, finally, 
to minimise the energy, one needs only to minimise n ( ~ / ~ ~ , ) ,  which is equivalent to 
minimising the cost function (2) for the graph G. This completes the proof of 
NP-completeness for the three-dimensional frustration model. We conclude with a 
series of remarks: 

(a) The problem of finding the ground state of the frustration model remains 
NP-complete, even if the size of the lattice in one direction is kept fixed (and equal, 
say, to 4 or 5 ) ,  since the embedding of any graph 6 as described in the proof can still 
be effected. It might thus be amusing to search for a spin glass phase in this essentially 
two-dimensional (albeit non-planar) model. 

= 
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Figure 3. A two-dimensional cross-section of an optimal configuration, for a fixed configur- 
ation of spins on the nodes. The shaded region is a sea of up-spins. Spins are explicitly 
drawn on  the network; they can only flip sign at the valves (broken transverse lines). The 
role of the construction of figure 2 was to insulate the wires from the surrounding sea of 
up spins, in the sense that the transverse energy is independent of the spin configuration 
on the network. 

(b) Our proof can also be trivially extended both to the frustration model in higher 
dimensions, and to the Sherrington-Kirkpatrick model even if couplings are restricted 
to be 0 or -1. 

(c) More work needs to be done to clarify the analogy between spin glasses and 
NP-complete problems. Measure considerations are particularly important: if, for 
instance, the algorithmic complexity of a model is relevant to its statistical mechanics, 
it should be unchanged by the exclusion of a set of instances whose measure, in the 
thermodynamic limit, vanishes. 

I would like to thank Nicolas Sourlas and Jean Vannimenus for bringing the work of 
Barahona (1982) to my attention, as well as Claude Bouchiat and Marc Mizard for 
discussions. 
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